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J. Phys. A: Math. Gen. 13 (1980) 1433-1441. Printed in Great Britain 

Theory of the scattering of electromagnetic waves by a 
regular grid of parallel cylindrical wires with circular cross 
section 

1. Introducl 

W G Chambers?, C L Mokl and T J Parker$ 
+Department of Mathematics, Westfield College, University of London, Kidderpore 
Avenue, London NW3 7ST, UK 
$Department of Physics, Westfield College, University of London, Kidderpore Avenue, 
London NW3 7ST, UK 

Received 23 April 1979, in final form 24 August 1979 

Abstract. A method is described for calculating the scattering of electromagnetic waves by a 
grid of equally spaced parallel cylindrical wires with finite conductivity. It is an adaptation 
of the ‘Green function’ method used in solid-state band-structure theory, as described by 
Ham and Segall. In this paper the theory is restricted to the case when the direction of 
incidence is in a plane perpendicular to the wires. Curves are shown for the transmission at 
normal incidence in situations typical of infrared spectroscopy. 

)n 

The use of wire-grid beam splitters in interferometers has led to experimental studies of 
their optical characteristics in the far-infrared range of frequencies. These grids consist 
of a set of equally spaced parallel wires. The theory of such grids has been attempted in 
many ways, such as those reviewed by Larsen (1962) and Petit (1975). We describe yet 
another method, which has been used to check experimental results obtained by 
dispersive Fourier transform spectrometry (Mok et a1 1979). In this article we describe 
the theory only for waves incident perpendicular to the axes of the wires. We plan in a 
later article to extend the theory to the case of arbitrary incidence. 

The method is based on the ‘Green function’ method of solid-state band-structure 
theory (Ham and Segall 1961). The wave equation is transformed into an integral 
equation with a Green function for kernel. The integral can be turned into a surface 
integral over the surface of one of the wires, and the integral equation is then turned into 
a matrix problem by the use of partial-wave expansions. Since the Green function does 
not involve the scatterer, it does not need to be recomputed if the radius of the scatterer 
is varied. It is assumed that the wires have a circular cross section. Presumably methods 
such as those of Waterman (1973) and Barber (1977) could be adapted to deal with 
more general cases. 

The method works well when the diameter of the wires does not greatly exceed the 
wavelength of the incident radiation and when it is less than about 80% of the spacing. 
These conditions are well satisfied in normal conditions. 
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The use of Green functions in a fairly general context is described by Morse and 
Feshbach (1953) and Jackson (1962). Bessel and Hankel functions and their integral 
representations are discussed by Watson (1944), Abramowitz and Stegun (1965) and 
Gradshteyn and Ryzhik (1965). 

2. Basic equations 

The basic method is described by Ham and Segall(1961). There the problem concerns 
wave propagation through a three-dimensional lattice of non-absorbent spheres. We 
consider a plane grid of identical, parallel, equally spaced cylindrical wires of radius c, 
and with a period a (a  > 2c). The axis of one of the wires is chosen as the z axis and the x 
axis is taken also in the plane of the grid (figure 1). The wires are made of a substance of 

I 
I 
I 
I ’T 

Figure 1. To illustrate the radial distances e- ,  c, r, and e+,  and a unit ‘cell’ 1 . ~ 1  <$a. In the 
end the limits e-+e,  c + + c  are taken, with r trapped between c and C + .  

conductivity U. The direction of the incident radiation lies in the Oxy plane. Then we 
need consider only two directions of polarisation, one with the electric vector B parallel 
to the wires, and the other with the magnetic vector B parallel to the wires. In the case 
of monochromatic radiation, with a time variation taken as e-’”‘, the Maxwell equations 
reduce to the form 

(1) -v26(r)  -I- v 4 ( r )  = K2$(r) 

with r = (x, y ) ,  V2 = a 2 / a x 2  + a 2 / d y 2 ,  and K = ~ ( E ~ W ~ ) ~ ’ ~ .  In the former case the 
dependent variable $J is E, and V is equal to - i w p o a ;  in the latter the dependent 
variable is B, and V is a more complicated gradient operator (see (25) below). Except 
that V may be complex this equation has the same form as the Schrodinger equation of 
band-structure theory. It should be noted that V vanishes outside the wires. In order to 
put in the boundary condition that the scattered waves are outgoing it is convenient to 
give K’ a small positive imaginary part, which is allowed to tend to zero at the end. 

With an incident wavevector (ko, lo) with lo = (K’ - k;)’’? we choose the incident 
wave as 

bO(r)  = /il” exp [i(kox i- lay)]. 

The diffracted plcne wave will be taken as 

b,(r) = 11,,-1’’ exp [i(k,x + l,y)] 
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with k ,  = ko+2vm/a,  1, = *,(K2-km) . The factor llml-1’2 is put in so that unit 
amplitude corresponds to unit power. The suffix m should be regarded as composite, 
with an integer part to specify the order of diffraction and a two-valued part to specify 
the sign of I,. 

2 112  

The free-space Green function satisfies 

( K *  + V’2)Go(r - r f )  = fi(r - r’) (2) 

and is given by 

Go(R) = -a  iHo(KR) 

where Ho is a Hankel function of the first kind. We use R for r - r’, with components 
X ,  Y. We need the Green €unction satisfying 

G ( X  + a, Y )  = exp (ikoa)G(X, Y )  

which is given by 
m 

G ( R )  = - t i  c HO(KIR -asl) exp (&as) (3) 
s=--00 

with a = (a, 0). An alternative expression is given by the Fourier expansion: 

G ( X ,  Y )  = (27~a)-’ f 1-1 dl(K2 - 1 2 -  k?)-’ exp [i(k,X + !U)]  
n = - W  

with k ,  = ko+2.rm/a and with K’ having a small imaginary part. For large positive 
values of Y the method of residues shows that G ( X ,  Y )  is given approximately by 

G ( X ,  Y )  = - (27~a)-’ c” T iIlmld1 exp [i(kmX+ I m Y ) ]  
m 

where the sum is taken over those values of m giving real positive values of 1,. Thus we 
obtain for y >> y ’ :  

G(r  -r’) = -i(2a)-.’ 1” bm(r) b$(r’). 
m 

(4) 

There is a similar result for y’ >> y .  

(figure 1). Equation (1) may be transformed into the integral equation 
From now on we may consider r and r’ as being restricted to a single ‘cell’ 1x1 <*a 

$ ( r )  = bo(r) + d2 r’G(r - r’) V(r’)$(r’) ( 5 )  J 
where the ‘volume’ of integration should be a whole cell, but since V(r’)  vanishes for 
r f  > c, it may be taken to be the ‘volume’ inside r’ = c+ where c+ is a fixed quantity 
between c and $a, but usually taken to be just greater than c (figure 1). Hence, for y 
large and positive we find by (4) that 

$ ( x ,  ~ ) = C ” S m o b m ( x ,  Y )  
m 

with 

S,O = S,O -i(2a)-’ 1 d*r’b;(r‘)V(r’)$(r‘) 
r ’ < c +  

and similarly for negative values of y .  The Sm0 are the required scattering amplitudes 
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and when there is no absorption it can be numerically verified that they satisfy the 
energy conservation rule: 

3. Partial-wave expansions 

In order to find Smo we need to determine G(r  - r ’ )  from (3), say, and then use it in (5) to 
get rl,(r), which is then in turn used in (6). To facilitate this process we expand b, rl, and 
G in partial waves, but before doing this it is convenient to turn the integrals in (5) and 
(6) into surface integrals. 

Because of (1) we may replace V ( r ’ )  in (6) by (K’”’’). Then we replace K’b(r’) by 
-V”b(r’), and use Green’s theorem to obtain 

A similar idea is used for (5) but we first choose r so that r < r‘ (figure 1). By (2) we have 
K’G = -V”G(r - r’) + S(r  - r’)  and so we obtain, after cancelling rl,(r) from each side, 

a a 
b ( r )  = dS‘ ( $ ( r ’ )  7 dr G(r  - r ’ )  - G(r  - r’)  ar $(I!)), 

r ‘=c+  

For the expansions we introduce orthonormal angle-dependent functions: 

Yl(rj = (2r)-”’ exp (ile,) (10) 
(where 8, is the polar angle of r and 1 = 0, f 1, k 2, . . . ) or similar sine and cosine 
functions which enable us to exploit the symmetry of the structure under y ++ - y .  Then 
we expand in solutions of the appropriate wave equations separated in polar coor- 
dinates: 

G ( r - r ’ ) = x  
1 

Here the J1 are Bessel functions and the 41 are the solutions of the radial equation 
obtained from (1). The coefficients b!” are obtained from the expansion 

exp (ik . R ) = ~ ~ ~ c ~ % ( K R ) Y T ( ~ ) Y ~ ( R )  (14a) 
1 

In (11)-(14) the summations over 1 and I’ are taken from ---CO to fm. The quantities r> 
and r< are the greater and lesser, respectively, of r and r’. The first part of G is the 
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expansion of Go which can be derived by adapting a method described by Jackson 
(1962), as can (14a).  The rest of G can be regarded as being produced by the sources in 
(3) other than that for s = 0, and the coefficients Du, have yet to be determined. 

The angular integrals in (8) and (9) are performed using the orthonormality of the 
Y1(r') to give, after eliminating the coefficients JI1, 

SnO= Sno-( ra ) - l  1 bT'"'(M-')il,blP' (15) 
11' 

with 

MfI, = D11, + PISII' (16) 

where 

p1 = [(H/4i - 4lHi )(J/4i - 4JI )-lll,=c+ (17) 
the primes denoting dldr ' .  We have let r in (9) tend to r' from below. 

4. Computation of the Green function 

The coefficients DII .  in (13) and (16) are related to the coefficients BL in the expansion 

G ( R )  = -aiHo(KR)+E iLBLJL(KR)YL(R) (18) 
L 

by 

with 

(which is simply (2r)-"ztjL,1-I, if the Y1 are given by (10)). This result can be obtained 
by expanding each exponential in exp (iq . R) = exp(iq . r )  [exp (iq . r')]" by (14a) and 
integrating round a circle in the q plane centred on the origin to give an expansion for 

To obtain the BL we may use a technique suggested by Ham and Segall(l961). The 
Hankel functions in (3) are replaced by an integral representation, which is broken into 
two ranges at a real value (Y of the argument. One part can be summed by Fourier 
methods, and the other is left as it is. The technique gives a swiftly convergent 
expression for G ( R ) .  Then the limit R -+ 0 is taken. With the definition (10) we finally 
obtain 

J L W )  YL(R). 

BL -(2r)-1'zK-'L'(x1+xz+x3) (20) 
with 

X1=a-' loCOdl [ 2 R e ( k n - i l ) ' L ' ] ( k ~ - ~ K + f 2 ) - 1 e x p [ - ( k ~ - ~ 2 + 1 2 ) ( 4 a z ) - ' ]  
n=-m 
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We note that B-L = BL. Here the quantity cy is a real and positive parameter, which 
affects the rate of convergence of (21) but not the final result. The quantity +iO in (21c )  
is to indicate that the pole is to be avoided by passing above it. A sketch for a proof is 
given below. 

A less elaborate but rather slowly convergent formula is obtained as follows. As in 
(13 )  we may set, for s # 0, 

Go(R -as) = 1 Yl(R) Y? (as)( -fir) J l ( ~ R ) H I ( ~ a I ~ I ) .  
/ 

Next we put G ( R )  = Go(R)+ d(R) ,  so that 

G ( R )  = Go(R -as) exp (ikoas). (23 )  
S#O 

If we then substitute (22)  into ( 2 3 )  and compare with (1 8 )  we obtain 

This result may be used to demonstrate the correctness of (20) and (21) .  First, by 
differentiating with respect to cy under the integral sign we may show that the result is 
independent of cy. Then we manoeuvre cy in the complex plane towards zero so that XI 
and X, tend to zero. (For this to be successful K~ must have a positive imaginary part, so 
that arg(K2) is just greater than 0, and then arg(cy) must lie between -ZT and 
-ar +f arg ( K ~ ) ,  see Ham and Segall 1961). Then the integrals in X2 become integral 
representations of the Hankei functions in (24). 

Formula (24)  converges very slowly, but quite good answers can be produced by 
careful ‘apodisation’ and the correctness can be checked against (20) and (21) .  The 
imaginary part of BI. is best obtained from ( 2 1 ~ )  and (21c)  from the poles just off the 
real axis; there is no contribution from (21b) .  

Several checks for program correctness are available. First, if (20) and (21) are used 
the results should not depend on cy. Secondly the results should agree with (24) .  
Thirdly, with zero dissipation in the wires the sum rule ( 7 )  can be used. Finally, if the 
scatterers are weak the ‘Born approximation‘ (Morse and Feshbach 1953) can be used 
by replacing $ in (6) by b and performing the integral directiy without using 6. 

1 

5. The amplitudes at the wire 

We now discuss how to find the logarithmic derivatives of the radial functions at the 
surface of the wire, i.e. (dq5,/dr)4T1 evaluated at r = c+. This quantity is needed for 
(17) and, in fact, is the way in which the properties of the wire enter the theory. 

In the case with E parallel to the wires the wave equation is (with $ =E,)  

V2$ = Q$ 
with 

Q =  -. 2 
1w pou - w E O # l d O .  

We define q = Ql”, with the sign chosen so that Re(q) > 0. Inside a metal at infrared 
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frequencies the second term in Q may be neglected, so that q = ( W ~ ~ C ) ' / ~  exp (-$i.n). 
In free space we let c + 0 + in Q, so that q = - iw(cOko) 'Iz. Then it is found that both t,b 
and d$/dr are continuous across the interface, so that 

[4 i / 4 l I r = c +  = {[~l(iqr)/drl/Jl(iqr)}r=c.. 

with c f  just greater than c, and with c- just less than c. Thus we evaluate this 
expression using the radial function just inside the wire. 

In the case of infrared radiation incident at 3 THz on tungsten (v-' = 5 5  x lO- ' f l  m) 
the skin depth is about 0-1 pm, which is very much less than a typical wire diameter of 
5-10 pm. Thus we approximate 41 by e", so that 

( 4 i / 4 l ) r = c +  z 4. 

V . (Q-'Vt,b) = t,b 

For the other polarisation we put t,b = B, to give the wave equation 

( 2 5 )  

from which it follows that Q-'a$/ar (as well as t,b) is continuous across the interface. 
(This can be transformed into the form (1) with V replaced by [ K ~ +  Q - QV(Q-') . VI, 
the third term of which is a first-order differential operator.) Hence we find that 

(4 I /  4l) r =  c +  = [Q (C + )/ Q (C - )I{E~JI (iv)/drI/.h (iqr)}r=c-. 

With the above approximation this gives 

( 4 : / 4 l ) r = c +  -- -w2€oko/q. 

6. Uses of symmetry 

Although it is more convenient to use the definition (10) of Yr for the expansion (18), a 
different definition is better in (11)-(13). One may replace 1 by a composite suffix lm 
( I  5 m a 0) and set Yoo = ( 2 ~ ) - ' / ~ ,  and for 1 > 0, Ylo = sin 18,. 
Equations (14) and (19) are still valid, but the functions Yt are now distinct from Yl and 
Yl,, Then it is found that the matrix elements Mlm,~~m, in (16) vanish for m # m',  so that 
the matrix separates into two parts, one for m = 0 and the other for m = 1. This 
reduction is associated with reflection symmetry in the plane of the grid. When the 
radiation is normally incident there is a further increase in symmetry. It follows from 
(24) that BL vanishes for L odd, so that by (19) Mlm,l,mr vanishes if ( I  - 1') is odd. Thus 
Mlm,l,m, is further reduced into parts with 1, I '  even, and I ,  I '  odd. Moreover, by (14b) 
bjo' vanishes if 1 - m is odd, so that for m = 0 we need only take I ,  1' even, and for m = 1 
I ,  I '  odd. 

-1/2 cos le,, Yll = .n 

7. Some results 

A few curves of the transhission amplitude against frequency are shown in figure 2 for 
five values of the wire diameter. The period a is taken as 100 p.m and the radiation is 
assumed to fall normally on the grid, with the E vector parallel to the wires. The 
transmission amplitudes are not affected by more than a few per cent even when the 
resistivity is increased a hundred times, so that as expected these curves are very close to 
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Wavenumber lcm’) 

a / A  

Wavenumber [ cm-’1 
0 100 200 

- 
- 

t 1 
fF I 2 fc 1 
1 .o 2.0 -120 

o /A  

Figure 2. Plots of the transmission amplitude (a )  and phase ( b )  against frequency for wires 
of diameter (1) 5 p n ,  ( 2 )  10pn,  (3) 20pm, (4) 30pm, (5) 4 0 q .  The spacing, a, is 100p.m 
and the resistivity of the wires is 55 x 10-9Rm. The critical frequency is 100 cm-’ or 3 THz. 
A is the wavelength. It should be noted that on the phase diagram the vertical scale is correct 
for curve ( 5 ) ,  but that to avoid confusion, curves (l), (2), (3) and (4) have been displaced 
upwards by 80, 60,40 and 20°, respectively. 

the ideal case. (However, the reflectivities are more significantly reduced by an increase 
in the resistivity.) 

The curves show that at the first critical frequency the transmission becomes almost 
perfect. The theory is not straightforward at these frequencies because the coefficients 
BL of the Green function in (20) have a ‘reciprocal square root’ divergence coming from 
the vanishing of the denominator in (21a) at zero argument when k, = K. However, for 
thin wires (c << 2 1 r / ~ )  only the partial wave with I = 0 is sighificant. In this case the 
matrix M in (15) is simply a scalar, and its divergence causes the second term to vanish, 
so that Soo = 1. It seems that the first diffracted waves, moving parallel to the grid, with a 
wavelength matching the spacing, can set themselves so that at the wires they almost 
completely cancel the incident wave. We have not investigated why this seems to 
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happen with thicker wires, at least at the first critical frequency, but it may be a 
consequence of the use of the approximate formula (24) for the Green function, which 
cannot give the divergence correctly at the critical frequencies. 

In this paper we have given a method for calculating the scattering of electromag- 
netic radiation from a grid of parallel wires. In a subsequent paper we intend to use this 
method to study the performance of interferometers constructed with wire-grid beam 
dividers and polarisers (Martin and Puplett 1970). 

Acknowledgments 

C L Mok is indebted to SRC for the award of a CASE postgraduate research 
studentship. The authors also wish to thank the University of London and Westfield 
College Computing Centres for the use of their facilities and the Numerical Algorithms 
Group for the use of their subroutines. 

References 

Abramowitz M and Stegun I A (eds) 1965 Handbook of Mathematical Functions (New York: Dover) 
Barber P W 1977 IEEE Trans. MTT-25 373-81 
Gradshteyn I S and Ryzhik I M 1965 Tables oflntegrals, Series and Products (New York: Academic) 4th edn 
Ham F S and Segall B 1961 Phys. Reu. 124 1786-96 
Jackson J D 1962 Classical Electrodynamics (New York: Wiley) 
Larsen T 1962 I R E Trans. Microwave Theory Tech. MTT-10 191-201 
Martin D H and Puplett E 1970 Infrared Phys. 10 105-9 
Mok C L, Chambers W G, Parker T J, and Costley A E 1979 Infrared Phys. 19 437-42 
Morse P M and Feshbach H 1953 Merhods of Theoretical Physics vol 1 (New York: McGraw-Hill) 
Petit R 1975 Nouv. Rev. Optique 6 129-35 
Waterman P C 1973 Computer Techniquesfor Electromagnetics ed R Mittra (Oxford: Pergamon) pp 97-157 
Watson G M 1944 A Treatise on Bessel Functions (Cambridge: Cambridge University Press) 2nd edn 


